Another scary thing about the Greenland ice shelf:
When the remnants of Europe’s second summertime heat wave migrated over Greenland in late July, more than half of the ice sheet’s surface started melting for the first time since 2012. A study published Wednesday in Nature shows that mega-melts like that one, which are being amplified by climate change, aren’t just causing Greenland to shed billions of tons of ice. They’re causing the remaining ice to become denser.
“Ice slabs”—solid planks of ice that can span hundreds of square miles and grow to be 50 feet thick—are spreading across the porous, air pocket-filled surface of the Greenland ice sheet as it melts and refreezes more often. From 2001 to 2014, the slabs expanded in area by about 25,000 square miles, forming an impermeable barrier the size of West Virginia that prevents meltwater from trickling down through the ice. Instead, the meltwater becomes runoff that flows overland, eventually making its way out to sea.
Most of Greenland isn’t a dense slab of ice, it’s more like a snow cone (to us non-glaciologists that is).
A dusting of fresh snowfall covers a thick layer of old snow, called firn, that’s slowly being compressed into glacier ice but still contains plenty of air pockets. When the top of this snow cone melts in the summer, liquid water percolates down into the firn, which soaks it up like a 100-foot-thick sponge.
As opposed to flinging it all into the ocean and drowning Bangladesh. That’s what we don’t want.
Ice slabs have already caused Greenland’s runoff zone to expand by about 26 percent, according to the new study. So far the additional runoff has only added about a millimeter to global sea levels. Greenland now contributes a little under a millimeter per year to rising sea levels, through a combination of icebergs breaking off glaciers and melt occurring at the surface and base of the ice sheet.
But if Greenland’s surface hardens more, runoff could rise dramatically.
And that would be bad.